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REVIEW ARTICLE 

Fractional statistics: a to P 
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USA 
t Department of Physics, University of Central Florida, Orlando. PL 32816-2385, USA 

Received 19 November 1993 

Abstract. We review the problem of fractional statistics as it applies to two current areas 
of interest in condensed-matter physics: the fractional q m N m  Hall effect (FQH~). and high- 
temperature superconductors (msc). In the case of the former, we emphasize Haldane’s recent 
definition of afracfionol exclusion principle, and show a relation between this idea and the 
standard definition of fractional statistics in terms of a complex exchange phase. We show that 
a fractional exclusion principle is both appropriate and useful for the quasipmticles in the FQE. 
In the case of the HTSC (where Haldane’s novel delnition has not been pursued), we review the 
experimental status of the ‘anyon superconductivily’ model for the mc.  Here we find much less 
suppm for the hypothesis that the excitations are anyons. We also argue thaI the past neglect 
of Haldane’s fractional exclusion principle d e s  the resulting theory inconsistent. 

1. Introduction 

What is an anyon? Why even consider the idea? The answers to these questions have 
evolved over the last decade and a half, thanks to a large body of work by a number of 
investigators from a variety of backgrounds. 

It may be useful to answer the second question first. There are two reasons-as there 
are for most problems in physics-to think seriously about anyons: there is the aesthetic 
appeal of the ideas connected with fractional statistics, and there is the possibility that 
these ideas can help us understand physical phenomena. The anyon problem, nevertheless, 
has a somewhat unique fingerprint. It involves very simple and fundamental ideas, whose 
consequences are subtle and not easily guessed. Hence physicists from many specialties 
are attracted to the problem. However, so far, the restriction of these ideas to two spatial 
dimensions has almost completely limited their application to condensed-matter physics. 

We are drawn to the problem for both reasons; however, believing that the beauty of 
the ideas speaks for itself better than we could elaborate it, and having the most interest 
in those ideas with potential for application, we propose to concentrate on the problems 
of fractional statistics in the context of condensed-matter physics-in particular, those two 
condensed-matter systems in which anyons have been seriously considered as candidates for 
well defined excitations: the fractional quantum Hall effect (FQHE), and high-temperature 
superconductors (HTSC). 

The concepts of fractional statistics may also be considered to fall into two areas, namely, 
the by-now well known fractional exchange parameter a (defined by writing the exchange 
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phaset as exp(iaa)), and the less well known, but equally novel, fractional exclusion 
principle (first defined by Haldane [l] in 1991, defined by us below, and symbolized by the 
‘exclusion coefficient’ p henceforth). In fact, following Haldane’s invention of the latter 
idea, and our own efforts [24] to test and apply it in the FQm, we claim that there are now 
two, in principle distinct, kinds of anyons-which we will call, not surprisingly, a-anyons 
and B-anyons. 

In discussing the FQHE we will concentrate on p,  in order to emphasize the most recent 
work, and to avoid excessive redundancy: the significance of fractional a for this problem 
was pointed out in 1984 by Halperin [SI and by Arovas et a1 IS], and has been amply 
reviewed elsewhere, for example in [8-10]. 

In the case of HTSC, only the idea of fractional a has (to our knowledge) been applied. 
Here we will emphasize the experimental tests of this idea, and their interpretation. Our 
choice is again guided by an effort to avoid redundancy. There are, in fact, more reviews of 
‘anyon superconductivity’ than we can keep track of; we mention [7, 101 and two original 
articles [ll, I21 for entrance to the literature. 

G S Canrighr and M D Johnson 

2. Fractional statistics: a and p 

Let us briefly reintroduce a. We need to define an exchange phose which is in general 
distinct from a permutation eigenvalue of a wavefunction. This phase may be thought of 
as a unitary weight which is associated with paths involving exchange in a path integral 
[14-161, or more simply as the phase q exp(i8) which results when two identical particles 
are exchanged. Then a is defined by putting 8 = ax. Clearly a is only defined mod 2. 

If a is not an integer then q is complex, which in turn means that an exchange may 
be distinguished from its timereverse. This further implies that a clockwise exchange 
is distinct from a counterclockwise exchange-which makes no sense unless we confine 
ourselves to two spatial dimensions. (Also, we clearly must allow for broken time-reversal 
(7) symmetry, and for broken two-dimensional parity (Pz).) So we very quickly obtain the 
‘standard‘ definition of fractional statisti-ne which is only applicable in two dimensions, 
and which necessarily involves broken symmetry. 

Why is it called ‘fractional statistics’ (rather than ‘fractional multiple of R in the 
exchange phase’)? An obvious question: ‘statistics’ refers to state counting in statistical 
mechanics; and everyone knows that the counting rules for bosons (q  = +1) differ from 
those for fermions (q = -1). Yet in the case of fractional a, defined as above, the 
second phrase, although horribly unwieldy, is accurate, while the first (fractional statistics) 
is misleading: it suggests that we know the counting rules for objects with fractional 01. 

In fact, we do not. Given a, we cannot, in general, specify how states are ‘filled‘ 
by identical a-anyons without further investigation. The simple answers, which we know 
already, are those for ideal bosons and fermions. We can formalize this by defining ,3 to 
be the ‘number of single-particle states’ which are ‘filled‘ (removed from the oneparticle 
Hilbert space) by the addition of a single particle. Then ideal bosons and fermions have 
p = 0 and 1, respectively; and, for the simple boson and fermion cases, we get ,6 = a 
(mod 2). 

We use quotation marks heavily above because it has been known for some time [U,  161 
that one-particle states do not provide a useful basis for the many-anyon problem-hence 
the obvious extension to fractional @ does not work (and makes no sense: how to fill of 

t Here and elsewhere we Sreely use the term phase to refer either to the complex exponential el9 or to its 
argument 8.  
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a state?). 
Haldane [I] nonetheless provided a usable, non-obvious extension of these ideas in 

1991. He considered the many-body wavefunctions of n identical particles. Holding the 
coordinates of n - 1 particles fixed, he supposed that the many-body wavefunction could be 
expanded in a basis of single-particle states of the nth particle, assumed to span a single- 
particle Hilbert space of dimension d,. It is crucial to Haldane’s approach that d, be finite, 
and, in general, depend on the number of particles present. Hence the following definition 
applies to elementary excitations (quasiparticles) in a condensed-matter system. Haldane’s 
exclusion coefficient @ is defined by the change in d, when the number of particles changes: 

@ = -(Ad,/An) . (1) 

(For rational @, An can be chosen to make Ad“ an integer.) It is obviously not always 
simple, or even possible, to extract a single-particle dimension d, in this way. An approach 
which is often more convenient is based on the dimension D, of the many-particle Hilbert 
space. Dn and d, are related by [ I 4 1  

where (2) E n!/(n -k)!k! is the usual ‘choose’ notation. The definition (1) is equivalent to 

d, = dl - @(n - 1) (3) 

giving finally 

(Notice that it is essential to hold the Hamiltonian and the boundary conditions, including 
the area constant as the number n is varied, in order for a computation of @ to make sense 
U].) 

The above then gives us a second ‘statistics parameter’ (p) .  and therefore a second 
meaning for the term ‘fractional statistics’ (i.e. fractional @). The definitions (&0) 
obviously make sense in the integral cases, i.e. ideal bosons and fermions. Haldane [l] 
offered two non-trivial examples involving fractional p: spinons in a disordered ‘RVB’ 
spin liquid [17], and charged excitations in the FQHE. In subsequent work [2-4] we tested 
Haldane’s argument for the FQHE using an exact numerical computation of p ,  via 4. We 
are not aware of any other work which directly addresses the question of fractional 6. 

Hence our knowledge of p-anyons is quite limited at present. We believe, however, 
that the idea is as important as that of a-anyons. A basis for this statement might be found 
in a summary of the kinds of evidence we find for both a- and @-anyons, as follows. 

FQHE. The FQHE is the only real, physical system for which there is strong (albeit entirely 
indirect, and almost entirely theoretical) evidence for fractional statistics. The evidence 
for fractional (Y is mostly variational (cf [6, IS]), but nevertheless convincing and widely 
accepted. We have shown [U] that @ can be calculated independently of any variational 
ansatz, and that it is fractional. We have further shown that 01 and fl are closely linked for 
zD particles in the lowest Landau level (LLL>-which, to a good approximation, describes 
the FQHE. 
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Anriferromagnets and mc. Disordered antiferromagnets (‘spin liquids’ having only short- 
range antiferromagnetic order-including doped ones such as, possibly, the rrrsc) have been 
thought to support excitations which are a-anyons [ I I ,  19, 201. It appears to be difficult 
to produce a spin liquid from any reasonable Hamiltoniani. However, given such a state 
supporting spinon excitations, Haldane has offered a simple and convincing argument, along 
with an exact solution for a ID problem, that ,8 = 4 for the spinons [I]. The arguments 
[ll, 19, 201 that a = $ for the spinons as well are more tenuous. Finally, experiments (to 
be reviewed in detail below) seeking signs of a-anyons (in terms of broken time-reversal 
symmetry) in the HTSC have failed to provide convincing evidence for the idea. 

Others. As already hinted in the previous paragraph, the notion of fractional p is not 
restricted to two spatial dimensions. It is therefore clear that fractional p need not always 
be accompanied by fractional a. The converse, however, may not be true: it may be 
that, in nature$, fractional a is inevitably accompanied by fractional #J. Certainly, if the 
complex exchange phase arises from vortices in an incompressible fluid [U] (as is the case 
for the quasiparticles in the FQHE), then [I, 211 a fractional p follows. (We will make this 
connection clearer in the next section.) Hence fractional &statistics may in fact be the more 
general phenomenon of the two. 

We hope to have answered the question ‘what are anyons?’ in this section. The answer 
is longer, and more interesting, than it used to be. In the next two sections we address the 
question ‘why consider them? in the more restricted and pragmatic sense, i.e. ‘where are 
they?’. We will mostly not address the most pragmatic question (for physicists), namely, 
‘what testable predictions come from anyon models?’. This is primarily because the answer 
is ‘very few’. (In fact, one might argue that the primitive state of anyon theory is evidenced 
by the fact the we have only just realized how their Hilbert space behaves with filling, and 
have not yet systematically explored the consequences.) 

G S Canright and M D Johnson 

3. Fractional quantum Hall effect 

3.1. Preliminav: a and ,8 in the F ~ H E  

Why do we believe that quasiparticles in the FQHE are a-anyons? The argument. at least 
for QH, is rather simple. (From now on we use ‘QH’ and ‘QE’ to mean quasihole(s) and 
quasielectron(s), respectively, and retain the term quasipdcles to mean either.) A QH 
arises [I81 as an extra zero in the wavefunction of all the electrons. This m o  represents an 
extra unit of (canonical) angular momentum for each electron, due to an extra flux quantum 
in the area (relative to the U = l / m  state, where v is the Landau-level filling fraction). 
Hence the QH is a vortex-which gives it one unit offctifiolcr flux even though the true 
magnetic flux is not bound to it. Since the phase of the electrons winds around each vortex 
by 2n (just as the phase of a unit charge winds by 2n when it is transported around a 
flux quantum), the electron number of the QH is its fictitious ‘charge’ (also its true charge 
since the electrons are charged). Thus, QH represent a composite of fictitious charge bound 
to fictitious flux. This ‘charge’l’flux’ language is useful since it allows us to obtain the 
non-fictitious exchange phase as an ‘Aharonov-Bohm’ phase [I6]. In convenient units, the 
exchange parameter (I is then just ‘charge’x‘flux’-which is I / m  for the QH [6]. 

$ A nice overview of spin liquids may be found in the appendix of 181. 
$ One can of wurse define modeh for which a is fmtiond and ,8 is an in tega  On this point, see the discussion 
in section 5. 
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The QE then represents an ‘anti-zero’ (created by the electrons to absorb a defrcit of 
one flux quantum, again relative to v = l/m) which is less well understood in detail [181. 
Nevertheless it is clear that both the vorticity and the charge of the QE are just the negative 
of those for a QH-giving? UQE = ~ Q H .  

With this picture, and with one more ingredient, we can rather readily understand 
Haldane’s argument for ~ Q E ~ Q H  in a simple way. The extra ingredient is the single-particle 
Hilbert space dimension for the quasiparticles, which is obtained as follows. We consider 
the quasiparticles as the relevant degrees of freedom, and note that [6, 21, 221 to the 
quasiparticles, the electrons appear as zeroes, i.e. as ‘flux’. Hence the quasiparticles may 
be viewed as quantum mechanical ‘charges’ in their lowest Landau level, and the dimension 
of their (single-particle) Hilbert space is just the total ’flux’ they see-which is Ne, the 
number of electrons. 

We now add quasiparticles (let us say, to be specific, QH) atfued boundary conditiom- 
which here means fixed true flux. Hence we can only change the QH number n by changing 
the electron number Ne-which changes the Hilbert space dimension. We then get 

~ Q E  = -Ad,/An = -AN,/An = +l/m.  (5) 
Adding QH is accomplished by removing electrons, thus reducing the Hilbert space for 

Clearly this argument amounts to equating -@ with the charge of the QH (in units of 
the electronic charge). Assuming our model for QE is correct, the same statement should 
hold for them; this gives 

~ Q E  = - l /m . (6) 

further QH. 

3.2. a, @, and angular momentum’ in the lowest Landau level 

The above arguments, leading to ~ Q H I Q E  = H / m ,  are quite simple and apparently robust, 
since they rely only on the unquestioned charge and vorticity of the quasiparticles-plus the 
assumption that we know how to count the Hilbert space dimension for vortices. In order 
to accept these p values we need, however, to augment the above arguments with others, 
andor with specific calculations. We will do both here. First we offer another argument, 
using pseudo-wavefunctions for the quasiparticles. 

Consider n ry-anyons confined to a disk of radius R, in a uniform magnetic field (R 
and subsequent lengths are in units of the magnetic length). To be definite, suppose that 
positive-charge fermions (with attached ‘upwards’ flux to make them a-anyons) move in 
the x y  plane, and that the magnetic field points down. Treating the external field in the 
symmetric gauge, and the attached flux in the singular gauge, it can be shown [U] that 
n-anyon wavefunctions 

= f(zt,zZ. .. . , zn)e-~Jz~lz /4  (8) 

where f is any symmetric polynomial, form a set of degenerate ground states (for ideal 
particles). These can be thought of as lying in a lowest Landau level. Our task is to count 
the number of such states, ~ to extract an exclusion coefficient p using (4). We can view 

7 Note that this sign convention nssumes that there is M ‘absolute clockwise’ in the plane which is lhe same for 
both UQE and OQH. Obviously the absolute sign of both of these us depends on this convention; they have the 
same sign if they share the same sense of clockwise. 
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0 as a wavefunction for n bosons in the lowest Landau level. (These are not simply the 
anyons with the flux tubes removed-the probability density given by is not simply 
proportional to that given by [ Y I*.) Our god is to find the number of linearly independent 
fs which keep the particles within the finite area. The most compact wavefunction of the 
form (8) has f = 1. For this f, @ has all of the bosons in the single-particle state with 
angular momentum index k = 0. The bosons are all near z = 0, but the Jastrow factor 
spreads out the anyons described by Y. Now place one particle at the edge. That is, put 
f = f~ = z p + z y + .  . .+z:, where M (to be found shortly) is the largest value for which 
all the anyons are within the finite area. With this f, n - 1 bosons are near the centre, and 
one near the edge. Now consider the first term in the symmetric sum f ~ ,  which places 
near the edge and the other zi near the origin. Then in Y it is easy to see that the maximum 
power to which Z I  is raised is zI . isgives ape& in at lz,[ - M+a(n- 1). 
For this to be within the prescribed area, the maximum M is M = R -a(n - 1). In general, 
when the bosons are placed in any of the single-particle states k = 0 to M ,  the anyons stay 
within the finite area The number of such single-boson states is M + 1, and the number of 
n-boson states is 

G S Canright and M D Johnson 

M+u(n-I) 

Each of these states corresponds to an anyonic Y. Thus we have found that the number of 
n-anyon states is of the form (4), with 

B =a. (10) 
We know immediately, however, that this result is not entirely correct, because the sign 

of a is arbitrary, while that of @ is not. (In fact, we got B = a by choosing a convention 
such that positive a required increased area-so giving positive B . )  Furthermore, we know 
that we can change the power of each zij by multiples of 2 (say, by 21) without changing the 
exchange parameter a (which is only defined mod 2). Increasing the power by 21 changes 
the rate at which added particles consume area (and hence Hilbert space) in the LLL; that 
is, this changes @-also by 21. Hence we see that one can change a (by a sign convention) 
without altering B ;  and one can change ,3 (by multiples of 2) without affecting a. 

We can clear all of this up by (somewhat reluctantly) defining one more parameter, 
which we will call y .  This is the power with which lY(i, j ) [  vanishes as lzi j l  +. 0; it also 
determines the density-since it is y which gives the fictitious charge of the classical two- 
dimensional, onecomponent plasma [IS] which is mimicked by 1YI2. Hence an amended 
version of (1 0) is 

B = Y  (11) 
where y is the power of the Jastrow factor n(z; - zj)Y in (7). Clearly then IyI must 
equal 1011, or at most differ from it by an even integer. Although it is annoying to invent yet 
another parameter, we feel that y is needed in this case since a, whose usage and ambiguity 
are already well established, does not contain the unambiguous information we need. 

The above derivation gave (10) (rather than (11)) because we set y equal to a in 
(7). This came from the assumption that the 'statistical' flux opposed the extemal flux. 
Now, since vortices see electrons as fictitious (external) flux, and hence see (quasi) holes 
as opposing (statistical) flux, the above argument applies to quasiholes, with a = l/m: 
~ Q H  = BQH = l /m 0. Quasielectrons, in the same coordinate system, should then have 
the prefactor of \I, in (7) modified to 151 

n(Z; - z y  . (12) 
icj 
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Here ~ Q E  = ~ Q H  = l / m  (since the minus sign in the exponent is compensated by the 
complex conjugation) as asserted above; but (apparently) ~ Q E  = - c i ~ ~  -= 0. (Intuitively, we 
can recall that quasielectrons pull electrons in, hence requiring decreased angular momentum 
and decreased area-that is, negative y.) This prescription raises the delicate problem 
[13, 14, 23, 281 of pseudo-wavefunctions for the QE which diverge (rather than vanish) as 
zi j  + 0; however, we will find in section 3.3 that the issue is circumvented by QE built 
from true, interacting electrons. 

We thus see that y solves the sign ambiguity problem associated with a. We also 
claimed that it resolved the ambiguity of cr with respect to adding multiples of two; and it 
does. However, this means that particles with the same ci can have fi values which differ 
by 21. Actually, a better way to say this is that the value of p can depend on the energy 
scale examined In fact, we do not have a finite Hilbert space (On in (4)) unless we impose 
an energy cut-off-which makes good sense for condensed-matter problems, involving low- 
energy physics in confined systems [I]. It is thus not surprising that p may depend on the 
cut-off chosen. 

To be explicit, for ideal or-anyons with a z 0, the total degenerate ground-state manifold 
has a dimensionality given by (9) which leads to an overall p = a. But for interacting 
(non-ideal) anyons, this ground-state degeneracy will be split by the interaction energy. 
In analogy with the case of electrons in the lowest Landau level [24], one can define 
pseudopotential parameters vzt which give the’energy of a pair of particles in a state of 
relative angular momentum (RAM) 21+01. Then if the cz differ sufficiently in magnitude, it 
will be possible to choose different energy scales (corresponding to states in which particles 
avoid ever-higher RAM). For each such scale there is an appropriate (and unique) value of p. 
Something entirely similar occurs for quasiparticles in the FQHE. They, too, are interacting, 
and, as we will show below, one can define multiple energy scales-ne for each value 
of 2l-corresponding to effective pseudopotential parameters, each with a unique p. In 
some sense this was (at least part of) Laughlin’s insight [25] into the U = l / m  states, and 
is the essence of Jain’s [26, 271 ‘composite-fermion’ approach: at the energy scale of the 
v = 1 j m  state (which is the Coulomb pseudopotential V,-Z for m = 3.5, . . .) the electrons 
are fermions with? p = y =in (and a = 1). 

These arguments thus give the same /3 values for the FQHE quasiparticles as Haldane’s- 
except for some uncertainty about adding multiples of two. We have also connected p with 
a-at least for the LLL problem. Hence, assuming that wavefunctions of the form (7) make 
sense [5, 181 for quasiparticles, we have that 

fractional a fractional p (13) 
for quasiparticles in the FQHE. 

3.3. p.from exact electronic spectra 

The expression (13) is particularly interesting because, unlike a (which has been computed 
from variational wavefunctions [6]), p can be computed independently of any variational 
assumptions, simply by counting states. Furthermore, computational technology has 
advanced to the point that exact spectra can be computed for finite numbers of interacting 
electrons over a range of filling fractions including v = 3 and the first two daughter states 
[5, 221 on either side (1 and 3). Several groups [2, 3, 27, 28, 291 have examined such 

t For example, with VI as our energy cut-off, we can add p = 3 elecuons to a given aren at fixed field until 
Dn = 1, i.e. the Hilbelf space is ‘full’ at this energy scale. This is of course the Y = state. Further addition of 
elecuons requires an energy VI and hence n larger cut-off. 
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spectra for electrons on a sphere. All these groups obtain the same result for the number of 
states in the low-energy Hilbert space. For n QH the dimension of the low-energy subspace 
is, for Ne electrons, 

G S Canright ana! M D Johnson 

The corresponding result for n QE is 
D R E = (  N e + 2 - n  ) .  

It remains simply to convert these expressions to results at fixed boundary conditions, 
i.e. fixed total (true) flux ( N O  flux quanta) through the sphere. This requires writing Ne 
(which varies with varying n, at fixed N O )  in terms of n and NO. For the QH case, N O  
may be Written as NO = 3N,  + C + n, or N ,  = (NO - C - n ) / 3  (where C is a finite-size 
correction on the sphere [2, 301). Thus 

where dl = (NO + C ) / 3  + (1 - $) = N e [ n = , + l ,  i.e. the number of states available to a 
single charged particle on a sphere which is penetrated by Ne flux quanta-consistent with 
the claim that quasiparticles see electrons as flux. 

Hence the numerical spectra tell us that 

BQH = f 
in agreement with (5) above. 

Next we want ~ Q E .  Since n now represents QE we have N+ = 3N,  + C - n or 
N. = (NO - C ) / 3  + n/3 ,  giving 

(Again dl = NeIa=,+1.) 
In other words, quasielectrons built out of real interacting electrons reject fl = -$. 

This is not surprising since y = -4 puts the QE on top of one another, incurring an 
unacceptably large Coulomb penalty [28]. The interesting property of quasielectrons is that, 
regardless of the value of 21 chosen, their p parameter cannot fall into the naively expected 
range 0 6 p 6 1. Haldane’s original argument gives them a negative p ,  which would 
cause the many-particle Hilbert space to grow with increasing n even faster than that of 
ideal bosons-by causing the ‘number of states’ d. available to the nth particle to actually 
increase with n. Instead, we find that the QE ‘fill states’ even more rapidly than do ideal 
fermions. 

3.4. Are (I! and ,E ambiguous? 

One commonly hears the claim that ‘statistics are ambiguous in two dimensions’. A better 
translation of this statement is, ‘one cannot deduce a statistics from a wavefunction’s 
symmetry’. This is because particles of any (I! statistics can be represented by either 
fermions or bosons with attached fictitious Eux. This ‘ambiguity’ allows one, for instance, 
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to represent fermions with symmetric (bose) wavefunctions [31, 321. The particles are 
nevertheless fermions due to the flux attached to the ‘bosons’; this may be ascertained 
using (singular-) gaugeinvariantt measures such as a Berry’s phase [33]. 

Similarly one could argue that state counting does not give an unambiguous~measure 
of statistics. For instance, the result (14) can be explained from two completely different 
viewpoints [l, 31. First, suppose for the moment that QH can be treated as bosons which see 
the background electrons as Ne quanta of effective flux. Thus the low-energy states are those 
of n bosons moving in a lowest Landau level of dimension NLff = NE + 1. This subspace 
has dimension (NpT-’ ) ,  which is exactly (14). This viewpoint underlay Haldane’s original 
‘bosonic’ approach to the hierarchy [22]. 

The second way to explain the dimension (14) is based on the ‘integer-mapping’ 
approach used by Jain and co-workers 126, 271. Each n-QH state near U = 4 can be 
mapped [34] to an n-hole state near v = 1 by multiplying the latter by a Jastrow factor 
(on a disk, by n ( z i  - zj)’). This mapping is one-to-one and, for the purposes of state 
counting, exact. (All the states below the kinetic-energy gap near v = 1 can be written as 
the filled Landau level wavefunction (which contains a factor n ( z i  - z j ) )  times symmetric 
polynomials Q(zl, z2, . . . , ZNJ All the states below the interaction (VI) gap near U = $ 
can be written as the Laughlin wavefunction (which contains a factor n(zi - ~ j ) ~ )  times 
the same polynomials e.) The n-hole system has Ne electrons in N. + n quanta; there are 
(N;+”) of these, again in agreement with (14). Thus the dimension of the subspace lying 
below the interaction gap cad be obtained by arguments treating the QH as bosons (as in the 
bosonic hierarchy approach), or as fermions (as in the integer-mapping approach). 

A similar statement holds for (15)-with the proviso that ‘bosons’ be broadly defined 
to include ,!3 = 2. Hence one might argue that &statistics are ambiguous in the FQm. 

We view Haldane’s approach to ,!3 as the analogue of the gauge-invariant approach to (I!. 
The virtue of Haldane’s approach is that it requires dl (the ‘effective Fock-space dimension’) 
to remainfuced while n is varied, at fixed boundary conditions [l]. Once an energy scale 
(and hence D,,) is identified, this prescription gives a unique result for p. At the scale of the 
interaction gap in the FQHE, the corresponding B values are given by (17) and (19) above. 
These values are of course fractional; and they rely on no variational assumption (beyond the 
minimal assumption that we can count the quasiparticles). Furthermore, assuming that one 
can use an effective Hamiltonian and effective wavefunctions to describe the quasiparticle 
degrees of freedom, one gets from (13) an independent confirmation of fractional (I!. 

3.5. Pruning the hierarchy, wing ,3 

We can easily identify first-generation ‘daughter’ states of U = f . ~  They occur when the low- 
energy space consists of a single, non-degenerate ground state, separated from the excited 
states by a gap which measures the strength of the interaction between quasiparticles. In 
our present formulation, this means setting 0; = 1 in (16) or (18), and solving for n. 
Converting the pair (n, Nm) to (Ne,  Ne) then gives the usual assignments [30] for the 
daughter states-for instance, the QH daughter f and the QE daughter g, arising from the 
parent $. We note that there is no sensible  solutio^ to 0, = 1 (where ‘sensible’ means 
that d1 and n are both large and positive, while IpI is of order 1) that involves a negative 

t A singular gauge transformation amounts to exchanging true (but confined and impenetrable) flux by modified, 
and in general multivalued, boundary conditions (and vice versa). For instance, fermions with attached point 
flux and an an&ymmetric wavefunction (and in ZD) x e ,  after n singular gauge transformation. U-anyons 
with multivalued wavefunctions. The exchange phase s however is invariant unda the amsfonnation, being 
dynamically generated in the former representation and built into the wavefunclion in the latter. See [7,23, 311. 
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@. Hence, the assignment ~ Q E  = -l/m is inconsistent with the standard hierarchy theory 
L7.21. 

We also note (as noted previously [28,351) that the gap which stabilizes the $ state is of 
order V3, while that for 3 is of order VI. This occurs because the former state (and some of 
the excited states at v = +) are composed entirely of electronic states which avoid relative 
angular momentum (RAM) 1 between pairs; hence the 3 ground state is distinguished from 
its low-lying excited states by an energy of order h. At v = ). the ground state is the 
unique state avoiding V I ;  hence the gap is of U(V1). Finally, for Y > 4, all states include 
some electron pairs with RAM 1, such that, in general, the interactions between the QE [35] 
are of U(Vx), as is the gap at v = 3. These statements may be verified by varying the [F} 
numerically, and observing the resulting spectra. 

We have not yet penetrated more than one layer deep into the hierarchy of states using 
the above approach of studying exact spectra for small systems of electrons. However, we 
can learn something about alternate daughters at the same level. We view the f state as the 
unique state in which the QH avoid RAM $. In analogy with the electronic pseudopotentials 
we define GZ as the interaction energy of two QH in RAM (21 + +). Then the + state is 
the unique state avoiding CO at that filling, and its gap is U(!&) - U(V3). One can then 
imagine a unique ground state at a lower density of QH (higher electron density) at which 
all the QH avoid RAM 2+ $, and so avoid the energy cost I%. This is a state in which all the 
QE have 4 extra zeroes and so experience ?4 while avoiding cz (in analogy with electrons . 
at U = f feeling V5 while avoiding V3). 

For electrons the [q] are monotonic in [: VI t V, > V, . . . . Hence the state at U = 4 
in which electrons participate in RAM 5 while avoiding 3 is not only unique; it is also the 
ground state. The analogy with quasiparticles and the [cz] will then hold if this set is also 
monotonic in 2E. The [?z] have been estimated from exact numerical few-electron spectra 
by us [2, 41 for QH and for QE, and by a more elaborate procedure using trial wavefunctions 
(for QE) by B6ran and Morft. Our own approach relied on the fact that, for n = 2, subsets of 
states with various values of 21 can be identified$ with multiplets of total angular momentum 
in the electronic spectrum, using (4) with n = 2 and p = 21 + 4. 

Our analysis, as well as that of B6ran and Morf 1361, gives the result that the set [ vz] 
is not monotonic: in every case, we find co > v4 > Cz. These results imply that the 
hypothesized state in which all the QH feel vd while avoiding 4 is not the ground state 
at that filling. This means that the analogy with the electronic 'horizontal' hierarchy of 
increasing @ values breaks down at this filling-which is, in electronic units, v = & (QH) 
and v = E (QE). 

Hence we find that, according to standard hierarchy theory, these filling fractions should 
not be stable incompressible states for polarized electrons. This conclusion was also offered 
as a conjecture for the 6 state by Gros and MacDonald, who studied trends in the chemical 
potential jumps as a function of filling for finite systems of electrons [30J. Both of these 
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t T k  set [ fu ]  have been estimated for QE. using a procedure involving variational wavefunctions [361. They 
found Vo > v d  > 
$ For example, Dn = 28 for N. = 6 and n = 2 with f l  = 4 (quasihales). These states can be clearly identified in 
the specuum. The 28 states consist of multiplets of total angular momentum L = 0,2.4,6 and hence dimension 
1.5,9.13. Setling f l  = 21+ 4 with21 = 0.2.4.6 then gives D.(U) = 2 8  = 13e39eSe 1; 15 = 9e5e I; 
6 = 5 e 1; and 1, respectively. Thus we identify 21 = 6 with the singlet; 21 = 4 with the L = 2 multiplet; and 
so on. We then take h = ( E x  - En) - Z(E1 - En). where Eu is the energy of the relevant 2-98 multiplet and 
Eo,, is the lowest-energy Stare with 0 or 1 QH pment. 

> 4, i.e. qualitatively similar results to ours. 
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conclusions are apparently consistent with experimentt [38]. 

3.6. Summary: cu and @ in the FQHE 

Thus, finally, a partial answer to ‘where are the anyons?’ may be had from the above: the 
quasiparticles in the FQHE possess both fractional cu and fractional 6. We believe that these 
are unambiguous results from theory. Experimental verification remains to be found. There 
is evidence for the fractional charge of the quasiparticles [39] (and some controversy [40] 
about it), and a suggestion [41] for a modification of these experiments which might test 
for fractional a. 

We also offer a small increment to the small existing body of testable predictions 
from anyon models, namely, the instability of the A and 3 states. This amounts to 
cutting branches off the standard hierarchy ‘tree’ of states [SI; this tree itself is the main 
experimental prediction of the standard hierarchy theory, which models the quasiparticles 
as anyons. 

4. High-temperature superconductors 

We now turn to the question of fractional statistics in the msc. The suggestion that 
quasiparticles in the HTSC may not have the quantum numbers appropriate to free electrons 
was first made by Anderson 1171. Subsequently, Laughlin [ l l ,  201 argued that the spin 
excitations (‘spinons’) of a two-dimensional quantum spin-i antiferromagnet should have 
fractional statistics with 0 = cun = n/Z, by mapping the spin problem to that of hard-core 
bosons in a magnetic field, at U = 4. Laughlin further argued that the charged excitations 
of the doped magnet should take on the same cu-statistics (exchange phase) as the spinons, 
and that such an exchange phase could by itself give rise to long-range phase coherence at 
low temperatures-thus giving birth to the notion of ‘anyon superconductivity’. 

A consequence of Laughlin’s idea was immediately pointed out by Kivelson and Rokhsar 
[42]: (or-) fractional statistics breaks timereversal (7) symmetry, since e‘* e-@. In 
the case of the FQHE. the broken T symmetry is an obvious consequence of the externally- 
applied magnetic field; however in the case of the msc the symmetry must be broken 
spontaneously (as noted by Laughlin [42]). 

Subsequent attempts to test or extend Laughlim’s idea may be grouped into two classes, 
addressing the following two questions. (i) Is there a good ‘derivation’, starting from a 
physically reasonable microscopic Hamiltonian with unbroken symmetry, of the fractional 
statistics of the excitations in the HTSC? (ii) What are the promising experimental tests of 
anyon superconductivity? (For the remainder of this section we take ‘anyons’ and ‘anyon 
superconductivity’ to mean explicitly cu-anyons, as is customary in this area. @-anyons will 
be considered again only in the concluding section.) 

An example of (i) is Laughlin’s aforementioned mapping of the spin problem to hard- 
core bosons at U = 4. This amounts to a variational argument, as do most other arguments 
addressing this question [19]. We feel that, in spite of considerable work on the problem, 
there is no truly compelling theoretical argument for fmctional 01 in doped antiferromagnets. 
Hence we will not address this work here. 

The idea of anyon superconductivity has attracted considerable attention in spite of the 
relative weakness of this chain in the logic, in part because of the beauty and novelty of 

t There has been evidence of FQHE behaviour at v = A: but it appears to be astate of mixed spin polarization. See 
[36,37l. 
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the idea. The next link in the chain-that fractional or can give rise to a novel form of 
superfluid-appears to be stronger. Again, however, we will not review this link as it has 
been reviewed elsewhere; see, for example, [7] and [lo]. 

We then arrive again at the question ‘Where are the (or-) anyons?’, which leads naturally 
to (i) above: how do we detect them? There has been considerable effort expended on 
question (ii). Some of the early examples include [12,4345]. This work has given rise 
to several suggestions for experimental tests of anyon superconductivity. All of the tests 
but one have given an uncontroversial null result, and so will not be mentioned further 
heref. Instead we will concentrate (section 4.2) on giving a detailed history and analysis of 
experiments on optical rotation in the IITSC, seeking signs of broken I symmetry. Here we 
find the experiments have generated considerable controversy (which has somewhat abated), 
while the theory (as is typical) has provided only a qualitative guide as to what is to be 
expected. 

There is another group of experiments, seeking spontaneous local magnetic fields in 
the HTSC, which also will be briefly discussed (section 4.3). Here we find no controversy 
from experiment (null results), while theory fails to give an uncontroversial estimate for the 
magnitude of the expected effect. 

4.1. The problem of many planes 

There is one feature of fractional (or) statistics which is uncontroversial, namely, the broken 
I symmetry. Even here there is some difficulty, however, since (unlike the WE) the HTSC 
consist of many stacked planes in which I is broken spontaneously (if at all). I t  is then 
necessary to assume some kind of ordering (including, in principle, no order) of the broken 
symmetry, in order to even estimate the magnitude of the possible effects to be seen in an 
experiment. 

There are reasons both from experiment and from theory to favour the hypothesis 
of ‘antiferromagnetic’ (. . I + - + -~+ . . ., or ‘AFM’) order of the planes, over a uniform 
‘ferromagnetic’ (. . .+++++. . ., or ‘FM’) ordering of the broken symmetry. For one thing, 
it seems difficult to reconcile the various null experimental results with a FM scheme, which 
would likely [43] have gross macroscopic consequences, such as an anomalous magnetic 
susceptibility, Faraday rotation, etc. 

A second reason comes from theory. Rojo and collaborators 1471 have shown rather 
convincingly that, in the limit that tunnelling between planes is small (which is a typical 
assumption for the anyon model), there is an energetic preference for AFM order of the 
broken symmetry. This conclusion was obtained (1) from an exact solution of a one- 
dimensional model involving particles confined to coaxial rings in current-carrying states, 
with the particles coupled (between rings) by an ordinary scalar potential V(0ij);  (2) from 
exact numerical results for small numbers of anyons on planes, with again a scalar interplane 
potential; and (3) from a general analysis, to second order in the coupling, of I-violating 
systems coupled with a scalar potential. The energetic difference between FM and AFM 
alignment vanishes at first order in the coupling, and hence is in general insensitive to 
the sign of the scalar potential (attractive or repulsive). One conclusion to be drawn from 
this work is that there is a non-classical electrostatic coupling between circulating currents 
which favours (energetically) opposing circulation of nearby current elements. Thus, for 
instance, this effect would cause coaxial rings of current, at fixed magnitude of the current, 
to favour opposing or ‘Am’ order of the currents. Similarly, planar domains of a-anyons 
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t An example is an experiment seeking an offset in the Aux quantization spechum of a multiplysoMected m c  
sample by [461. 
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would have (assuming a finite net moment from circulating currents around the domain 
edge-see section 4.3) an energetic preference for opposing currents. arising purely from a 
non-7-violating coupling such as the Coulomb interaction. 

This effect thus competes with the classical (magnetostatic) effect, which, of course, 
favours FM coupling of currents circulating in coaxial rings or in stacked planes. It also 
competes with the coupling due to interplane tunnelling [481; however, order-of-magnitude 
estimates for the three effects [47] suggest that the tendency to AFM order will predominate 
in the HTSC. 

4.2. The closest approach of theory and experiment: AFM ordering of planes versus optical 
rotation 

Although the above is certainly not conclusive, AFM ordering of the planes has been of some 
interest for a third reason. A series of experiments [56-60] has been performed on the HTSC, 
seeking evidence for broken I symmetry in the response of these materials to circularly 
polarized light-a possibility first suggested by Wen and Zee [44]. These experiments have 
attracted considerable interest since they offer-though not unambiguously-some evidence 
for broken 7. Furthermore (as we will argue below-following work by Dzyaloshinskii 
[54] and by Canright and Rojo [55]), the most promising hypothesis involving broken 2- 
assumes AFM order of the planes. 

In this subsection we will review this series of experiments and their analysis. In our 
view the apparent viability of the hypothesis of broken 7 in the HTSC has gone through 
some large changes (up and down) in the course of the last three years. Hence it is of 
interest to trace the experiments in historical order. 

First we establish some notation. We consider light which is incident normal to the 
planes (consistent with the experiments), and resolve the light in a basis of circularly 
polarized (CP) waves: + and -7. Reflection and transmission coefficients are R and T 
respectively. Since (3D) spatial inversion P will also be important we will distinguish 
coefficients for incidence on the ‘right’ (r)  from those for incidence on the ‘left’ (e). Thus, 
for example, for unit amplitude +-CP light incident on the left, Ri+ and T:+ give the 
amplitude of +-CP light reflected on the left, and transmitted to the right, respectively (for 
details see [55]). Finally we adopt a common notation for the HTSC materials: 123 for 
YBazCu,O,-,, 2212 for BizSrzCaCuzOs, and 214 for La2-xSr,CuO+ 

(IR++Iz - IR--lz) + 6. The term in parentheses is zero in the absence of broken 7, 
as shown by Halperin [56]. The term S represents another, contaminating signal in the 
experiment (not necessarily smaller than the first) which might arise from broken P and 
unbroken 7. Lyons et a1 found a non-zero value for S,, in thin films of 123 and in bulk 
crystals of 123 and 2212, but due to the presence of the term S could not definitely conclude 
that broken ‘T had been observed. There were, however, several checks against artifaccs: 
no signal was observed for a polished silicon sample, nor for a gold film on the substrate. 
Also, and most interestingly, a 123 sample which gave a non-zero signal was then annealed 
in nitrogen to render it insulating; subsequently the insulating sample was found to give 
zero signal. Finally, Lyons et al reported a temperature dependence of their signal which, 
they argued, could not reasonably be ascribed to any parity-breaking transition which might 
give rise to a non-zero S. 

t These symbols refer to absolu;e-i.e. independent of the sign of the wavevector k-circular polarizations, 
rather than to chirality (right- or left-handedness with respect to k). Hence time revenal takes + + - (while 
leaving chirality unaffected). 

The first experiments, by Lyons et a1 1491 measured a signal proportional to S,, 
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Soon &er these results were announced, Spielman et a1 [SO] reported measurements of 
Ss, arg(Ti+/Ti-) on thin films of 123. This group used a fiber-optic loop allowing 
for the interference of two counterpropagating beams of light; hence the experimental 
technique almost perfectly reproduced the idealized gedanken experiment which compares 
an experiment (T:+) and its time-reverse ( T L ) .  These experiments gave a null result with 
very high sensitivity. 

Subsequently, Weber et al [51] measured a signal similar to that of Lyons et al in 
reflection, for single-crystal 123. The same group also measured the rotation in transmission 
of linearly polarized light, aligned on input with a principal axis of the (orthorhombic) 
sample (thin-film single crystals of 2212). This latter signal is proportional to 

(20) 

Weber et a1 found non-zero (even, in some cases, rather large) values for each of these 
signals, with a temperature dependence that was qualitatively l i e  that found by Lyons et a1 
[49]. Note, however, that neither of these measurements is sensitive only to non-reciprocalt 
effects; that is, both can be non-zero even if 7 is a good symmetry for the sample. As 
evidence for the role of broken 7, Weber et a1 made ten field-cooling trials (turning off the 
field above Tc, and measuring below T,)-three in reflection and seven in transmission. In 
every case they found consistency between the sign of the measured signal and the sign 
of the cooling field [51]. Making the common assumption that the broken-symmetry order 
parameter might form domains in each plane whose size is limited by the twin domain size 
of the samples, they conjectured that the large magnitude of their observed signal could be 
ascribed to the large twin domain size in their samples. 

These early experiments gave an extremely unclear picture. As noted by Spielman et a1 
[50], and later verified by a detailed analysis [55], the signal S, measured by Spielman et a1 
is the only purely non-reciprocal signal in the above experiments-that is, it is the only 
signal that conclusively implies broken I if it is non-zero. However, it can also be zero 
if I is broken. This possibility was suggested by Dzyaloshinskii 1541, who examined the 
implications for these experiments of the AFM model for the HTSC. Dzyaloshinskii observed 
that the AFM model has interesting symmetry properties which depend on the number of 
planes per chemical unit cell of the compound. In particular, materials with one plane per 
unit cell (such as 214) have the symmetry of a onedimensional king antiferromagnet- 
that is, except for surface effects, the material is invariant under 1. In contrast, for two 
planedunit cell (123 and 2212) the bulk AFM does not come back to itself under 7, but 
is invariant under P'T (where, again, P is 3D spatial inversion), since P switches the two 
planes, and 7 inverts the order parameters. Dzyaloshinskii noted that PT invariance$s 
ensures that Ti+ = Ti-  (i = r , Q ,  but does not constrain the corresponding reflection 
coefficients. Hence his analysis suggested a possible reconciliation of most of the above 

t A non-reciprocal signal S N ~  has the property [Sm + 01 + {broken I], or the convene (unbroken 71 
(Sm = 01. Hence (Sm = 0) does not tell us anything definite about broken 1. 
t nme reversal takes T?: to T:!; P then takes the i m r  to T?:~ so we get T+"+ = r4.L for PT-invariaot 
materials. In contrast P I  takes R Z  to R" so that PT symmetry does not force Rg = R?. Note that the 
convention here is that + and - are absolure circular polarizations, i.e. defined with respct to time rather than 
relative to the k-vector of the light. See [55] for details. 
§ Dzydoshinskii [54] also made thestronger statement that Plsymmevy forbids optical rotation in transmission- 
which would make the signal Sw, (20) of Weber et a1 [51] zero for P I  symmetry. However one can show that 
this statement is me only in the case of rotational symmetry about the propagation axis-which makes the 
'off-diagonal' (Tt-, T+) terms zero in (refswZ). 
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results, as well as an interesting test, namely a comparison of the behaviour of 214 with 
that of the two-plane materials. 

This test was performed by Lyons et a1 1571, who used an improved apparatus to cancel 
the unwanted signal 8, thus measuring S‘, E (IR++[* - [R--I2)  on 123 films and on a 
single sample of 214. The interesting result is that the 214 sample gave no signal; however, 
some of the 123 samples also gave no signal-hence, unfortunately, a consistent difference 
between 214 and 123 can be neither conclusively confirmed nor Nkd out. Also, although 
S,, is purely non-reciprocal so that a non-zero signal implies broken 7, the puzzling sample 
dependence of the results somewhat weakens the implication. 

Canright and Rojo [55] carried out a detailed symmetry analysis of the above 
experiments. They coni?” that SS, = arg(T.+/TL) is strictly zero if the sample obeys 
( P 7  + orthorhombic) symmetry. They also showed that the transmission results of Weber 
et al [51] are allowed by these, same. symmetries, due to an interplay between the lack of 
rotational invariance and the broken 1. Hence, on symmetry ‘bounds alone, Canright and 
Rojo found that all the reported experiments could be qualitatively reconciled. They also 
noted that early work [58] with ‘magnetoelectric’ (i.e. PI-invariant) antiferromagnets had 
shown that the order parameter of such materials could be reliably biased by cooling in a 
uniform magnetic field. Hence even the field-cooling results of Weber et al [51] might be 
reconciled with the AFM model. 

The apparent clarification offered by this analysis was short-lived, however. Spielman 
eta1 [52] modified their apparatus to test the AFM hypothesis, by measuring a non-reciprocal 
signal in reflection (SS, = arg(R~+/R~_))-asignal which is not identically zero given PPI 
invariance-in 2212 crystals and in 123 films. This experiment thus measured a quantity 
very similar to that measured by S b ,  and which is expected to be of roughly the same 
magnitude. Spielman et a1 again got a null result to high precision. 

Subsequently, Lawrence et al [53] attempted to closely replicate the experiment of 
Lyons et al, thus also measuring S,,, on single crystals and films of 123. They obtained 
a null result for all samples tested, after discovering and eliminating artifactual effects. In 
particular, they showed that surface roughness, coupled to apparatus imperfections-that is, 
effects which have nothing to do with I violation-could give a sizeable signal even for 
apparams which ideally is only sensitive to non-reciprocal effects. They pointed out that 
temperature dependence of the kind seen by Lyons et a1 may be caused by cond,ensation on 
the sample of contaminants such as ice and air, if the vacuum is not sufficiently good. 

These experiments thus duectly challenge the results of Lyons et al. which are the 
strongest positive results implying broken 7 symmetry in the HTSC. Further weight in 
favour of the null hypothesis was offered by Shelankov [55, 591, who showed that the 
substrate (required for the 123 samples) in the transmission experiments of Spielman et 
al [50] invalidated the symmetry assumptions of Dzyaloshinskii [54] and of Canright and 
Rojo 1551, such that the transmission experiments with substrate should have given a signal, 
possibly comparable to that seen in reflection. Shelankov also argued [55] that surface effects 
in an m, one-plandunit cell material such as 214 should be as large as the nominally bulk 
effects in the two-plane materials 123 and 2212. Subsequent calculations for finite stacks 
of 7-breaking planes by Canright and Rojo [S5] tended to support this argument; however, 
the calculations could not be extended to the true bulk limit. 

The history of these experiments is thus rather tortuous. A conservative evaluation of the 
results described would conclude that I is not broken in the HTSC. There is in fact no clear 
and unchallenged evidence for broken 7 symmetry in the msc from these experiments, and 
the majority of the experiments are consistent with the null hypothesis that I is unbroken 
in these materials. There are numerous technical details which may however undermine 
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these simple observations; in particular, Lyons [57] has emphasized that differences in laser 
spot profile may account for the differences between his own results and those of Spielman 
and of Lawrencet. The dependence on cooling field of the Weber experiments [Sl] is also 
puzzling. 

We note that all of the above experiments have been analysed in yedno terms, i.e. only 
qualitatively. There are some estimates of the optical properties of one or many layers 
of or-anyons [44, 601; however these estimates are subject to significant uncertainty. In 
any case the experimental results discussed above fail to support the hypothesis of anyon 
superconductivity already at the qualitative level. 

4.3. Spontaneous local fields from or-anyons 

In this subsection we briefly review the search for local magnetic fields in the msc. The 
suggestion of a spontaneous, orbital magnetic moment from or-anyons was first made by 
Halperin et al [43]. These authors considered a model involving two ‘species’ of or-anyons, 
arguing that these species arise as a result of the broken symmetry (which doubles the unit 
cell in real space). For simplicity (and for easy comparison with other results) we wiU 
discuss results for a single species; also, unless otherwise stated, a single plane of ideal 
anyons with or = 4 will be assumed, For these values Halperin et al found (here we neglect 
the overall sign) MO = ($)PB at T = 0 where MO is the spontaneous orbital magnetic 
moment per particle in units of the effective Bohr magneton f ig  = eh/2m*c. (The effective 
mass is of order 1-10 me for the carriers in the HTSC.) 

Halperin et ai obtained this value by adiabatic continuation from the mean-field state 
(where the ‘attached flux’ giving rise to w is treated at the mean-field level), and argued 
that it is exact. Subsequent experimental attempts [61] to measure the resulting magnetic 
field in wsc samples failed to find any, with a sensitivity threshold at least an order of 
magnitude below the estimate of  Halperin et al. 

These developments, although discouraging for the anyon hypothesis, at least offered an 
apparent, clean and quantitative disagreement between theory and experiment. Subsequent 
theoretical efforts have only muddied the issue: Kitazawa [60], also using arguments 
based on mean-field theory, found a temperaturedependent MO which is zero in the 
superconducting state and of order 50.1p~ in the normal state. This picture was supported 
by exact zero-temperature numerical results for a few anyons by us [62] which also gave 
Mo(T = 0) = 0; by our use [62] of the virial expansion (which necessarily describes 
the normal or high-temperature state, but avoids the mean-field approximation), which 
gave MO 5 (4)p~g and by the exact (few-body) finite-temperature calculations of Canright 
and Rojo [63], which interpolated nicely between these results. Subsequent calculations 
by Halperin and GeIfand [64], again using mean-field theory but including the Coulomb 
interaction, gave a substantial zero-temperature MO. in line with the original non-interacting 
result of Halperin et af 1431. Finally, we mention the virial-expansion calculation of Yi 
and Canright 1651, which included a long-range repulsion varying as l/r2 (which allowed 
an exact solution); this calculation gave a reduction of the normal-state MO by orders of 
magnitude from the non-interacting case. 

We thus see that theorists cannot agree on MO for ideal or interacting anyons, at low 
or high temperatures. While we believe that the picture (MO = 0 in the superconducting 
state, MO = finite in the normal state) is probably correct for ideal a-anyons, them is not 

t For example, a magnetic gamet sample, with domain size approximately that of the m c  twins. was tested in all 
three laboratories. The signal obtained in the apparatus of Spielman and of Lawrence, was significantly reduced 
relative to (hat seen by Lyons ([571 and K B Lyons, private communication). 
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general agreement on this conclusion; and the effects of interactions are not clear. Hence 
we feel that there is no firm theoretical basis for the experiments to test; the estimates range 
everywhere from zero to much bigger than the experimental threshold of sensitivity. 

4.4. Where are the anyons in the HTSC? 

Let us summarize the above. Such a summary can be quite brief: (i) there are no confirmed 
experimental results which support the hypothesis of a-anyons (or even broken 7) in the 
HTSC; (ii) there are no firm quantitative predictionst from theory for experimentalists to 
test. Point (ii) should not surprise us, since the state of anyon theory is primitive, and the 
problem is difficult. Points (i) and (ii) together, however, leave little room for enthusiasm 
for the anyon-superconductivity model for the HTSC. 

5. Summary, conclusions, and prospects 

We have hied to show in this review that Haldane’s fractional p is a concept at least as 
fundamental and useful as fractional a. Let us assume that we have succeeded, and ask 
where the idea leads. 

For one thing, we note that section 4 makes no mention of 6. In fact, it describes 
the theoretical difficulties and the experimental discouragement of ~ a model (anyon 
superconductivity) involving fractional a with an apparently ill-defined p.  Given the 
demonstrated applicability of fractional p-statistics in the FQHE, the question then naturally 
arises: what is the appropriate role and utility (if any) of fractional j3 in anyon models of 
doped two-dimensional antiferromagnets? 

Laughlin’s original proposal [ I l ,  201 of a = f for the charge-carrying quasiparticles in 
the HTSC was based on a strong analogy with the FQHE. The similarity of the variational 
wavefunctions for the two problems implies that the quasiparticles in each case are. vortices. 
We then recall Haldane and Wu’s result [21] that the quantum mechanics of vortices 
in a 2D fluid is that of (fictitious) charges in the lowest Landau level (LLL). Finally, 
invoking our arguments from section 3 that (in the LLL) fractional a should always be 
accompanied by fractional p, we find that a-anyons in Langhlin-lie chiral spin liquids 
should in fact have a fractional p.  We then inquire whether such a feature has in 
fact been incorporated in the theoretical models which have been used to study anyon 
superconductivity. 

In some cases-lattice models [32] with a-anyons-p naively appears to be 1 [ 11. .At 
least the total Hilbert space, including all possible many-anyon states, has a dimensionality 
that gives p = 1: each particle exhausts one site, which represents one state in the Hilbert 
space. However, we have shown in the discussion of sections 2 and 3 that @ depends on the 
energy scale being investigated. It is then possible that there exist low-energy sets of states 
in these lattice calculations which would be described by a fractional p ;  thii interesting 
possibility remains to be tested. We also know little about 6 for continuum anyons in two 
dimensions in the absence of a magnetic field. Semions (a = $) in no field appear, like 
bosons, to have a supelfluid ground state, and to have a low-energy linearly dispersing mode. 
For finite systems (e.g. a-anyons on a sphere 1671) one can count the number of states in 
this mode, which lies below an energy gap. We find that this subset can be described, at 
least in the thermodynamic limit, by an exclusion coefficient p = &so that the semions, 

t The order parameter for anyon supemnductivity (with a = 1.) has recently been predicted to be a complex 
d-wave without nodes, see [66l. It is not dew, however. that this is a necessq  consequence of the assumption 
a = 4: see also [43]. 
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restricted to this low-energy (superfluid) subspace, are bosons for statecounting purposes 
[68]. Yet, in this model, the overall (truncated) Hilbert space is built up as if the particles 
are truly fermions in the sense of ,9 = 1. Thus we find a mixed and unclear picture from 
these numerical studies of a-anyons; but, to date, we see no evidence for a fractional ,9. 

Now, although the theoretical justification for anyon superconductivity via doped, chiral 
spin liquids [19] is not compelling, an essential ingredient appears to be the close analogy 
with the FQE.  Hence, in such spin liquids, the spinons are vortices, and the LLL picture 
is correct-so that their ,9 should be f ,  as argued by Haldane [l]. Thus, models of 
anyon superconductivity which ignore the possibility of fractional p (as do essentially all 
calculations in the field) appear to us to be inconsistent with the microscopic basis for  the 
model-which involves, again, vorticity of the excitations, the associated fictitious field 
[15], and the consequent fractional ,9. Therefore, even though the theory and consequences 
of fractional ,9 remain to be explored, we find it difficult to place confidence in models 
which ignore such a possibility. 

Based on our arguments in section 3.2, a set of flux-carrying fermions (or bosons) in the 
lowest Landau level will, as it were, automatically acquire a fractional ,9 from a fractional 
cf. Hence, models of spinons (or holons) with fractional a may beconsistent if they include, 
in an appropriate way, a fictitious magnetic field. To our knowledge, [43] is one of few 
attempts to do so. 

A possibility which remains to be explored is that of fractional ,4 without broken time- 
reversal symmetry, arising, say, in spin liquids (doped or undoped) which are not chiral. 
Possibly, such a picture may capture Laughlin’s insight [ I l l  that spin-; excitations in a 
disordered, spin-; antiferromagnet are in an important sense fractional, without the necessity 
of invoking the chirality and concomitant broken symmetry. We note that Haldane’s [l] 
simple argument giving p’ = 4 for spinons does not involve any broken symmetry; in fact, 
it relies solely on the assumption that the spinons are well defined. Hence, we believe that 
the argument for fractional ,6 for spinons is more convincing than those arguments giving 
fractional a. 

While the consequences of fractional cr are only partly known, the consequences of 
fractional p have hardly been addressed. We believe, and have argued above, that both 
concepts (fractional a and fractional p )  are appropriate for the quasipaaicles in the FQHE. 
We have also shown that the notion of fractional ,9 can be useful, since it allowed us 
to extract interesting and non-trivial pseudopotential parameters representing the effective 
interactions between quasiparticles. These parameters in turn led to a testable hypothesis 
regarding the (lack of) stability of the FQHE at filling fractions v = 

In summary, we find that there are now two workable definitions of fractional statistics. 
These two ideas are coupled together for particles in the lowest Landau level (13). We find 
that both ideas are realized in the FQHE. In contrast, we find the case for applying either 
definition to doped antiferromagnets, and in particular to the HTSC, to be much weaker. 
Whether these two concepts of fractional statistics will be realized elsewhere in nature, and 
how useful they will ultimately be, depends on further work, which will, we hope, be guided 
by further advances in the as-yet primitive theory arising from these ideas. 

and 4. 
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